Approximation Algorithms for Constrained Knapsack Problems
نویسندگان
چکیده
We study constrained versions of the knapsack problem in which dependencies between items are given by a graph. In one version, an item can be selected only if one of its neighbours is also selected. In the other version, an item can be selected only when all its neighbours are also selected. These problems generalize and unify several problems including the prize collecting and budgeted maximum coverage problems. We give approximation algorithms and hardness results when the nodes have both uniform and arbitrary weight and profit functions, and when the dependency graph is directed and undirected. ∗Supported by an NSERC PDF fellowship. †Supported by NSF grant IIS-0812514 1 ar X iv :0 91 0. 07 77 v1 [ cs .D S] 5 O ct 2 00 9
منابع مشابه
A Robust Knapsack Based Constrained Portfolio Optimization
Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...
متن کاملMaximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-kna...
متن کاملMulti-Pass Streaming Algorithms for Monotone Submodular Function Maximization
We consider maximizing a monotone submodular function under a cardinality constraint or a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access to only a small fraction of the data stored in primary memory. We propose the following streaming algorithms taking O(ε) passes: 1. a (1 − e − ε)-approximation al...
متن کاملSubmodular Optimization with Submodular Cover and Submodular Knapsack Constraints
We investigate two new optimization problems — minimizing a submodular function subject to a submodular lower bound constraint (submodular cover) and maximizing a submodular function subject to a submodular upper bound constraint (submodular knapsack). We are motivated by a number of real-world applications in machine learning including sensor placement and data subset selection, which require ...
متن کاملTractable algorithms for chance-constrained combinatorial problems
This paper aims at proposing tractable algorithms to find effectively good solutions to large size chance-constrained combinatorial problems. A new robust model is introduced to deal with uncertainty in mixed-integer linear problems. It is shown to be strongly related to chance-constrained programming when considering pure 0– 1 problems. Furthermore, its tractability is highlighted. Then, an op...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0910.0777 شماره
صفحات -
تاریخ انتشار 2009